Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations

نویسندگان

  • Jonathan L. Payne
  • Lee R. Kump
چکیده

Carbon cycle disturbance associated with mass extinction at the end of the Permian Period continued through the Early Triassic, an interval of approximately 5 million years. Coincidence of carbon cycle stabilization with accelerated Middle Triassic biotic recovery suggests a link between carbon cycling and biodiversity, but the cause of Early Triassic carbon isotope excursions remains poorly understood. Previous modeling studies have focused exclusively on the initial negative excursion in δC across the Permian–Triassic boundary and have not addressed the cycles of positive and negative excursions observed through the Early Triassic. This study uses a simple carbon cycle box model to investigate potential causes underlying the series of Early Triassic carbon isotope excursions and to assess possible relationships between isotope excursions and coeval patterns of carbonate deposition. According to the model, introduction of carbon with the isotope composition of volcanic CO2 produces small negative carbon isotope excursions followed by larger and more protracted positive excursions. Positive excursions result because increased pCO2 causes warming, enhancing marine anoxia and associated regeneration of phosphate and thus allowing greater productivity. In addition, carbonate weathering is more sensitive than organic carbon weathering to changes in atmospheric pCO2 and climate, causing an increase in the overall δC composition of weathered carbon. Therefore, the full Early Triassic record of negative and positive carbon isotope excursions can only be accounted for within the model by several pulses of carbon release characterized by varying mixtures of organic and mantle isotope compositions. Thermal metamorphism of coal and carbonate rocks in the crust of the Siberian craton during eruption of the Siberian Traps flood basalts provides the most plausible mechanism for such a carbon release scenario. If multiple episodes of CO2 release account for Early Triassic carbon cycle instability (regardless of their precise trigger), then cessation of CO2 release is likely to explain acceleration of biotic recovery early in the Middle Triassic. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction

The end-Permian extinction is typically ascribed to massive volcanic eruptions, but direct geochemical evidence linking the two independent events is generally lacking. Zinc is an important micronutrient of marine phytoplanktons, and Zn isotope (d66Zn) ratios of seawater are markedly higher than those of volcanic rocks and riverine waters. We conducted high-resolution Zn concentration and Zn is...

متن کامل

Large perturbations of the carbon cycle during recovery from the end-permian extinction.

High-resolution carbon isotope measurements of multiple stratigraphic sections in south China demonstrate that the pronounced carbon isotopic excursion at the Permian-Triassic boundary was not an isolated event but the first in a series of large fluctuations that continued throughout the Early Triassic before ending abruptly early in the Middle Triassic. The unusual behavior of the carbon cycle...

متن کامل

Ocean acidification and the Permo-Triassic mass extinction.

Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed th...

متن کامل

The Permian–Triassic boundary in Antarctica

The Permian ended with the largest of known mass extinctions in the history of life. This signal event has been difficult to recognize in Antarctic non-marine rocks, because the boundary with the Triassic is defined by marine fossils at a stratotype section in China. Late Permian leaves (Glossopteris) and roots Vertebraria), and Early Triassic leaves (Dicroidium) and vertebrates (Lystrosaurus) ...

متن کامل

Mercury evidence for pulsed volcanism during the end-Triassic mass extinction.

The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (∼201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007